

植物のシングルセルRNA seqデータ解析

フィルジェン株式会社 バイオインフォマティクス部

2025.03

シングルセルRNA-Seqデータ解析

生データや定量済みファイルから解析可能 マウス操作 高スペックPCは不要

ウェビナーで使用するデータ

- Arabidopsis thaliana (シロイヌナズナ)
- 通常の培地(7サンプル)高スクロース培地(3サンプル)
- シングルセルRNA-SeqライブラリはDrop-seqバージョン3.1を使用

合計 10 のサンプル

Default	< Back	Next >	Run	Cancel

nfiguration. Reads Configuratio	n.	
		9
Preset		
Library Technology	Drop-seq	~ (
Read Configuration	Custom 10x Chromium 3' v1	
Barcode Mate	10x Chromium 3' v2 10x Chromium 3' v3	0
Cell Barcode Start	10x Chromium 5' Drop-seg	
Cell Barcode Length	12	
	12	• •
UNIT Start	15	• •
UMI Length	8	
Clip from 5' end		0
5' Number of Bases	0 0	0
Clip from 3' end		0
3' Number of Bases	0 0	0
Cell Barcode Detection		
Add Cell Barcode Whitelist		0
Cell Barcodes Whitelist		Browse ?
Cell Barcode Match Type	1MM Multi	· · · · · · · · · · · · · · · · · · ·

プラットフォームを選択します。

nfiguration. Alignment Paramete	rs.	6
2-pass Mapping		8
Min. Intron Length	20	÷ 3
Max. Intron Length	1000000	÷ 3
Max. # of Mismatches	999	÷ 3
Max. # of Multiple Alignments	20	÷ 8
Include Chimeric Alignments		0
Max. Distance Between Mates	1000000	÷ 3
》 onfiguration. Counting Configura	tion.	×
Onfiguration. Counting Configuration. UMIs	tion.	×
Onfiguration. Counting Configuration UMIs UMI Collapsing	tion. UMI Tools	×
Onfiguration. Counting Configuration UMIs UMI Collapsing UMI Filtering	UMI Tools Multi Mapping UMIs	× 5
Sonfiguration. Counting Configurat UMIs UMI Collapsing UMI Filtering Features	UMI Tools Multi Mapping UMIs	
Configuration. Counting Configuration UMIs UMI Collapsing UMI Filtering Features Multimapping Reads	tion. UMI Tools Multi Mapping UMIs Rescue	- • × 5 • • • • •
Configuration. Counting Configuration UMIs UMI Collapsing UMI Filtering Features Multimapping Reads Feature Counting	tion. UMI Tools Multi Mapping UMIs Rescue Exons+Introns	
Cells	tion. UMI Tools Multi Mapping UMIs Rescue Exons+Introns	
Cells Configuration. Counting Configuration Counting Configuration. Counting Configuration. Counting Configuration. Counting Colls Coll Filtering Coll Filt	tion. UMI Tools Multi Mapping UMIs Rescue Exons+Introns Empty Drops	

📀 Single Cell Counts: matri	ix_dog01 ×					Cells 2,389	Features 30,748 🗾 🖳 🖞	- 0
= Cell	= #Features	= Counts	← Feature ID	= Name	= #Cells	= Counts		
AAACCTGAGCGTTTAC	2285	6068	ENSCAFG00845015183	ENSCAFG00845015183	0	0	△ Actions	
AAACCTGAGGAGTCTG	1386	3725	ENSCAFG00845015195	ENSCAFG00845015195	0	0	Filtering	
AAACCTGCACCAGGCT	1216	2645	ENSCAFG00845015208	ENSCAFG00845015208	0	0		
AAACCTGCACGGTAAG	894	2050	ENSCAFG00845015217	ENSCAFG00845015217	0	0	Merge Single Cell Counts	0
AAACCTGCATACGCCG	691	1070	ENSCAFG00845015230	ENSCAFG00845015230	0	0	Experimental Design	0
AAACGGGAGACTTTCG	1108	2297	ENSCAFG00845015240	ENSCAFG00845015240	0	0	Clustering	60
AAACGGGGTCCCTACT	1307	2720	ENSCAFG00845015261	MAGEB4	0	0	Trajectory Analysis	
AAACGGGTCCAAACTG	1253	2960	ENSCAFG00845015275	ENSCAFG00845015275	0	0		
AAACGGGTCTAACTTC	1889	5122	ENSCAFG00845015297	ENSCAFG00845015297	0	0	△ Charts	
AAACGGGTCTTGTATC	1395	3528	ENSCAFG00845015303	ENSCAFG00845015303	0	0	Total Counts Distribution	G
AAAGATGAGCTTTGGT		70	ENSCAFG00845015316	EN C C		0	Expressed Genes Distribution	•
AAAGATGAGTCCAGGA	Barcodes or Ce	ells ₇₀	ENSCAFG00845015329	U4 Genes or Featu	res	0	% Mitochondrial Genes Distribution	
AAAGATGCATTAACCG	1267	2772	ENSCAFG00845015345	ENSCAFG00845015345	0	0		
AAAGATGCATTCGACA	837	1645	ENSCAFG00845015364	U6	0	0	△ Export	
AAAGATGGTCGACTAT	1550	3591	ENSCAFG00845015457	GK	172	182	Export Count Matrix	0
AAAGATGTCGGTTAAC	1243	2746	ENSCAFG00845015511	ENSCAFG00845015511	0	0		
AAAGATGTCTTAGCCC	1728	4503	ENSCAFG00845015550	ENSCAFG00845015550	12	12		
AAAGATGTCTTGGGTA	1126	2511	ENSCAFG00845015575	U6	0	0		
AAAGCAAAGGAGCGTT	763	2459	ENSCAFG00845015589	ENSCAFG00845015589	42	42		
AAAGCAACAGGAATCG	1319	3540	ENSCAFG00845015610	ENSCAFG00845015610	0	0		
AAAGCAAGTACCGGCT	1305	2873	ENSCAFG00845015615	ENSCAFG00845015615	0	0		
AAAGCAAGTCTTCAAG	1520	4153	ENSCAFG00845015631	ENSCAFG00845015631	0	0		
AAAGCAATCCCTCAGT	1245	2797	ENSCAFG00845015637	ENSCAFG00845015637	0	0		

解析が完了するとマトリクスデータが得られます。

クラスタリングなどの解析はこちらのサイドパネルから実行 します。

マトリクスデータの他、定量化プロセスの概要を記載したレポートとUMI Per Cell プロットが得られます。

Y軸にはUMIの総数、X軸にはデータセットで検出されたすべての Cellバーコードを表しています。灰色の部分はバックグラウンドノイ ズとみなし緑色の部分の細胞がマトリクスデータに保持されます。

Single Cell RNA-Seq Quantification Results

Summary

-	
Statistic	Value
Number of Reads	70758378
Sequencing Saturation	0.643287
Q30 Bases in RNA read	0
Reads Mapped to Genome: Unique+Multiple	0.679928
Reads Mapped to Genome: Unique	0.641817
Reads Mapped to GeneFull: Unique+Multiple GeneFull	0.644255
Reads Mapped to GeneFull: Unique GeneFull	0.5965
Estimated Number of Cells	1113
Fraction of Unique Reads in Cells	0.622961
Mean Reads per Cell	23624
Median Reads per Cell	14845
UMIs in Cells	8027126
Mean UMI per Cell	7212
Median UMI per Cell	5144
Mean GeneFull per Cell	2400
Median GeneFull per Cell	2120
Total GeneFull Detected	22013

Feature Stats

This section provides statistics regarding the feature reads, that is, the reads containing transcript sequences

The following statistics refer to reads that have been discarded for the mentioned reasons

Statistic	Value	
Unmapped	22116074	

発現値結果の統合

複数サンプル使用時は各マトリクスデータを作成後、マージを行います。

Long-Neau Analysis	1			_
Single Cell RNA-Seq	>	0	Single Cell RNA-Seq Quantification	ŀ
Coding Potential Assessment	>	0	Merge Single Cell Counts	

Ð	Me	erge Single	Cell Count	S	□×
Configuration					\bigcirc
				Ad	d Factor Load Design
Sample	Seedling	Batch	Medium	Days	Instrument
athaliana_root_A	S1	B1	Sucrose	5	HiSeq4000
athaliana_root_B	S1	B1	Sucrose	5	HiSeq4000
athaliana_root_C	S2	B2	Sucrose	7	HiSeq2500
athaliana_root_D	S3	В3	Normal	5	NextSeq500
athaliana_root_E	S4	В4	Normal	5	NextSeq500
athaliana_root_F	S5	B5	Normal	5	NextSeq500
athaliana_root_G	S5	B6	Normal	5	NextSeq500
		Default	< Back Net	xt > Cance	Run

🮯 *Single Cell Counts: Merge ×				
= Cell	= #Features	= Counts	^	⊤ F
arabidopsis_A-TTTTTGCCGGTA	4317	13181		AT1G01010
arabidopsis_A-TTTTTGCTTTAT	1107	1624		AT1G01020
arabidopsis_A-TTTTTGTGCGAT	572	984		AT1G01030
arabidopsis_A-TTTTTCGCACC	1117	2611		AT1G01040
arabidopsis_A-TTTTTTAGGAG	609	1380		AT1G01046
arabidopsis_B-AAAACGCCAGC	1137	1621		AT1G01050
arabidopsis_B-AAAACATCGTGG	718	1301		AT1G01060
arabidopsis_B-AAAACGGCTTCT	639	1293		AT1G01070
arabidopsis_B-AAAACGGGTAGA	593	769		AT1G01080
arabidopsis_B-AAAACTACGCTC	580	1114		AT1G01090
arabidopsis_B-AAAACTATATCA	378	660		AT1G01100
arabidopsis_B-AAAAGCTTCGCG	1107	1837		AT1G01110
	047	570		

設定画面では、マージするデータの選択の他、 各データがどのような特徴を持つかメタデータを作成します。 解析後、新たにマトリクスデータが作成され各バーコードの接 頭辞にサンプル名が追加されます。 定量プロセスでもフィルタリングが行われますが、さらにここではノイズとなるデータをフィルタリングします。

Default

Run

Cancel

				Filtering	0
ScRNA-seq Filtering (arabidopsis)	- 0	×			
Configuration		5			
Filter Features Minimum Cells	100	÷ 0			
Filter Cells by Counts Minimum Counts Maximum Counts	500 70631		最小セル数、最小・最大カウント、最々 任意に指定することができます。	小・最大特徴数を	
Filter Cells by Detected Features Minimum Features Maximum Features	0 9233	• 0 • 0			
Filter Cells by % Mitochondrial Genes Filter by % of Mitochondrial Genes Maximum % Mitochondrial Genes Mitochondrial Genes File	⊡ 10 Browse	0 €	→ ミトコンドリア遺伝子、葉緑体遺伝子 ことで、任意のパーセンテージを超える 子・葉緑体遺伝子を持つ細胞を破す	そのリストを指定する るミトコンドリア遺伝 棄できます。	
Version Details: - Seurat 5.0.3 - R 4.2.1 Please Cite: - Butler A., Hoffman P., Smibert P., Papalexi E across different conditions, technologies, an - Stuart T., Butler A., Hoffman P., Hafemeister and Satija R. (2019). Comprehensive Integrat	. and Satija R. (2018). Integrating single-cell transcriptomic data d species. Nature biotechnology, 36(5), 411-420. r C, Papalexi E, Mauck WM 3rd., Hao Y, Stoeckius M., Smibert I on of Single-Cell Data. Cell, 177(7), 1888-1902.e21.	· (含			

△ Actions

フィルタリング

フィルタリング

			Action	S		
ScRNA-Seq Clustering (arabidopsis_filt	tered)	– 🗆 X	Filterin	ng	0	
Configuration: Preprocessing		5	Merge	Single Cell Counts	0	フィルタリング後、クラスタリングに進みます。
		2	Experi	mental Design	0	クラスタリングの最初のウィザードでは、前処理の
This tool is designed to perform the clust Prior to the clustering, this tool allows th algorithm. This application is based on th	tering of cells coming from single e preprocessing the data in order ne widely-used Seurat package.	-cell RNA sequencing (scRNA-seq) data. to make it suitable for the clustering	Cluster	ring	3	設定を行います。
Normalization						
Normalize Data	\checkmark	Ø		正規化の実	施の有	無
Normalization Method	Log Normalization	· • •			נייטוו	
Data Adjustment						
High Variable Features	3000	÷ 0				
Scale Data		0				
Center Data		0				
Data Correction		-				
Mitochondrial Genes File		Browse		ミトコンドリア	遺伝子	・葉緑体遺伝子のリストに基づく修正
Rearess Out Cell Cycle Genes		Browse				
[<u>·</u>						
Dimensional Reduction						
Principal Components	50					
Default	< Back Next >	Run Cancel				

scrina-Seq Clus	tering (arabidopsis_f	iltered) —	
onfiguration: M	ulti-sample Data	Integration	\bigcirc
The Multi-sample conditions. As a re downstream comp	Data Integration step sult, this step enable varative analyses.	aims to integrate scRNA-seq datasets coming from different s the identification of shared cell types across datasets and th	samples or hus further
Integration Factor		medium (2)	~ ?
Integration Metho	bd	Seurat-CCA	~ 8
Seurat Options		Harmony	
N. Dimensions fo	r Integration	Seurat-CCA Seurat-Joint PCA Seurat-RPCA	0
K Anchor		10	÷ 0
K Score		30	÷ ?
K Weight		100	÷ ?
Harmony Options	5		
Theta		2	÷ ?
Lambda		1	÷ ?
Tau		0	÷ ?
Nº Clusters		5	÷ ?
Englight		4E-4	0

- 0	×
(
roups cells with similar expression patterns, which should	
Manual	•
20	0
20	0
0.6	0
0.3	0
1	0
	The second secon

クラスタリングを行うパラメータを設定します。 Dimensionsは、クラスタの分離と分解能に影響を及ぼします。 Resolutionを増やすとクラスター数が増えます。

データの統合に用いられる手法を任意に指定します。 このオプションは複数サンプルの場合行い異なるバッチや条件のデータ セットを統合する際に使用されます。

結果としてマトリクスデータが作成されます。 サイドパネルよりUMAP/t-SNEを表示できます。

UMAP/t-SNEの切り替え、メタデータの切り替えの他、 新規アノテーションの作成、遺伝子発現の視覚化を行うことができます。

Cell Type Prediction

クラスタリング後、サイドパネルからCell type Prediction を行います。

SingleR

公開データベースからダウンロードできる参照データセットと遺伝子発現プロファイル を比較して、個々の細胞にラベルを付けます。このアプローチでは、遺伝子発現プロ ファイルの類似性に基づいて各細胞にタイプを割り当てます。

CellKb

キュレーションされた知識ベースに対して、発現の異なる遺伝子を比較することで、 細胞グループにラベルを付けます。このツールでは、外部参照アノテーションは必要 ありません。

CellKbデータベースのみの販売も行っております。 データベースの詳細について 細胞種アノテーション

どちらのプログラムを使用した場合でも、 UMAP/t-SNEのメタデータ内に細胞種に関する 情報が追加されます。

Differential Expression Analysis

ルの最小数を設定します。

してテストされる。

Differential Expression Analysis

*					On	nicsBox 2.1.19	5 - Marta Ben	egas			- + :
File	e Viev	v Help									
ger to	9 veral ols	genome analysis transc	ript functional analysis	meta genomics work	nows				Start typing	to search actions	
8	🖲 *Sc I	Pairwise DE Re	sults: scrna_se	q_differential_	expression_a	IIVSall ×					
0										Table entries: 26/ 168	FPP (
00	⊤ Taos				T FDR		⊤ looFC	T LR		Hido Sido Papol	
ŏ	00	cluster 1	cluster 9.clus	ENSG00002	0	-0.29017	5.60482	73,73546	0	· Hide Side Fallel	
	00	cluster 1	cluster 9.clus.	ENSG000002	0	-1.07299	3.80291	58.86691	0	Actions	
	(ID)	cluster 1	cluster 9.clus	ENSG000002	0	-0.51338	7.66682	56.25231	0	Summary	0
	UD	cluster 1	cluster 9,clus	ENSG000002	0	2.16898	3.76491	55.21582	0	Set LIP/DOWN Tags	*
	UD)	cluster 1	cluster 9,clus	ENSG000002	0	4.6159	2.90735	52.33218	0	Set OP/DOWN Tags	C
	Up	cluster 1	cluster_9,clus	ENSG000002	0	4.45271	3.19027	50.61802	0	Fisher's Exact Test	0
	down	cluster_1	cluster_9,clus	ENSG000001	0	3.07451	-11.05655	42.8974	0		
	Up	cluster_1	cluster_9,clus	ENSG00002	0	1.92687	4.44785	42.11914	0		
	up	cluster_1	cluster_9,clus	ENSG000002	0	-1.50958	8.83064	41.25226	0	- CAPOTE	
	Up	cluster_1	cluster_9,clus	ENSG00001	0.00001	4.23193	6.29306	35.75649	0		
	up	cluster_1	cluster_9,clus	ENSG00002	0.00001	3.49885	3.05985	35.63237	0		
	up	cluster_1	cluster_9,clus	ENSG000001	0.00001	-2.03253	8.16088	35.30693	0		
	up	cluster_1	cluster_9,clus	ENSG00002	0.00001	-0.78736	6.0574	34.84093	0		
	up	cluster_1	cluster_9,clus	ENSG00002	0.00001	-2.67069	3.4582	34.26514	0		
	up	cluster_1	cluster_9,clus	ENSG000002	0.00002	-3.04191	4.60302	32.71138	0		
	up	cluster_1	cluster_9,clus	ENSG000001	0.00002	4.70804	4.27552	32.63564	0		
	up	cluster_1	cluster_9,clus	ENSG000001	0.00002	-1.57393	2.34859	32.26896	0		
	up	cluster_1	cluster_9,clus	ENSG000001	0.00005	4.03306	2.39889	30.69504	0		
	up	cluster_1	cluster_9,clus	ENSG000001	0.00006	2.33964	3.32793	30.0679	0		
	up	cluster_1	cluster_9,clus	ENSG00002	0.00007	-2.67157	4.55383	29.83111	0		
	up	cluster_1	cluster_9,clus	ENSG00002	0.00008	-1.35783	2.73788	29.51971	0		
	down	cluster_1	cluster_9,clus	ENSG000001	0.00008	3.05292	-10.60946	29.35155	0		
GO	Versio	n: lul 1 2022			/DATA	SETS/use case	islets/scrna :	ea differentia	al expression al	IVSall.box	

解析結果として発現変動遺伝子のリストや各種チャートが作成されます。

ヒートマップ

DE 結果の概要チャート

Fisher's Exact Test

Differential Expression Analysis結果のサイドパネルからエンリッチメン ト解析を実行できます。

*Functional Analysisモジュールの機能

解析結果の遺伝子名と一致する参照アノテーションデータ を別途ダウンロードしておく必要があります。

*今回はOmicsBoxに搭載されたBioMartからのデータダ ウンロード機能を使用し得たファイルを使用(functional analysis > Load > Load Data from BioMart) 。

エンリッチメント解析

- +		_	_		Marta Benegas	csBox 2.1.197 -	Omi	_	_	_		
											м нер	vie
	arch actions	tart typing to se	2					▼.	meta genomics workflow	cript functional	genome analysis	9 eral
			Result X	le: GO IDs Fisher	ression 🙃 *Tab	Differential Exp	ults: scRNA-sea	Pairwise DE Res	a results e *Sc	islets clusterin	esults: counts	Sc I
ap	Table entries: 22.667											
	Table entries. 22,007	- Not Appot Ref	- Not Annot Test	- Nr Reference	= Nr Test	= P _a value	= Adi Paralue A	= 60 Category	= GO Name	= 60 Term	= Tag	
	V Hide Side Panel	27101	2 NOC ANNOC TESC	1261	121	4 992606E 22	1 106967E 17		cypapso	GO:0045202	- Tay	
	Actions	27712	012	650	70	4.003000E-22	1.5270495.15	BIOLOCICAL B	synapse	G0.0045202		VER
*	Sot Over/Under Tags	27712	912	650	70	2.034299E-19	1.537048E-15	BIOLOGICAL_P	chomical synan	G0:0098918		VER
<u> </u>	Sec over/onder rags	27703	012	659	78	4 2059465-19	2 383404E-15	BIOLOGICAL P	trans-synaptic	60:0007208		/ER
3	Reduce to Most Specific	27682	012	680	78	2 178257E-19	9.8749125-15		synaptic signali	60:0099536		/FR
۲	Summary Report	27089	979	1273	112	7 810609E-18	2 9507185-14	CELLULAR CO	synaptic signali	GO:00333350		/ER
		27770	920	502	70	3 132363E-17	1.014304E-13	CELLULAR CO	axon	GO:0030424		VER
		26801	866	1561	124	1 799093E-16	5.097505E-13	BIOLOGICAL P	cell-cell signaling	60:0007267		/ER
	✓ Export	26290	841	2072	149	3 527734E-16	8 884793E-13	CELLULAR CO	cell junction	60:0030054		/FR
		27895	933	467	57	8 784714E-15	1 9912315-11	CELLULAR CO	nresynanse	60:0098793		VER
		26122	840	2240	150	6 977503E-14	1 356576E-10	CELLULAR CO	cell projection	60:0042995		VER
		26015	835	2347	155	7 181769E-14	1.356576E-10		nervous syste	60:0007399		VER
		27771	927	591	63	9.532343E-14	1.639222E-10	CELLULAR CO.	postsynapse	60:0098794		VER
		27954	939	408	51	1.012446E-13	1.639222E-10	BIOLOGICAL P.	modulation of c	GO:0050804		VER
		27953	939	409	51	1.102647E-13	1.666247E-10	BIOLOGICAL P	regulation of tr	GO:0099177		/ER
		26232	846	2130	144	1.215617E-13	1.72215E-10	CELLULAR CO	plasma membr	GO:0120025		/ER
		27575	916	787	74	2.154763E-13	2.87306E-10	CELLULAR CO	somatodendriti	GO:0036477		VER
		27795	931	567	59	1.487683E-12	1.873406E-9	BIOLOGICAL P	neuron projecti	GO:0048812		VER
		27780	931	582	59	3.976653E-12	4.744147E-9	BIOLOGICAL P	plasma membr	GO:0120039		VER
		27775	931	587	59	5.4749E-12	6.204978E-9	BIOLOGICAL P	cell projection	GO:0048858		VER
		27757	930	605	60	5.979241E-12	6.453879E-9	BIOLOGICAL P	cell part morph	GO:0032990		VER
		28020	947	342	43	7.485671E-12	7.377292E-9	CELLULAR_CO	synaptic memb	GO:0097060		VER
		27852	936	510	54	7.336465E-12	7.377292E-9	BIOLOGICAL_P	cell morphogen	GO:0048667		VER
		27911	940	451	50	9.924034E-12	9.372837E-9	CELLULAR_CO	neuronal cell b	GO:0043025		VER
		27843	936	519	54	1 347366F-11	1 22163E-8	CELLULAR CO	cell hody	GO:0044297		VER

エンリッチメント解析の結果のテーブルやチャートを作成できます。 特定の条件(例:クラスターなど)にどのような機能が含まれているか調べることができます。 まとめ

OmicsBox のシングルセルRNA-seq

- 生データ、あるいは定量済みデータを使用
- Differential Expression Analysisやエンリッチメント解析などの下流分析
- 手動でキュレーションされたCellKBを使用した細胞種アノテーション
- 初心者でも解析できるインターフェース
- 7日間無料のデモライセンス→ <u>詳細(PDF)</u>

お問い合わせ先:フィルジェン株式会社

TEL 052-624-4388 (9:00 \sim 17 : 00)

FAX 052-624-4389

E-mail: support@filgen.jp