

真核生物ゲノムのde novo アセンブリ

フィルジェン株式会社 バイオインフォマティクス部(biosupport@filgen.jp)

はじめに

- 比較的ゲノムサイズの大きい真核生物のde novo アセンブリは、高スペックPCやサーバーの導入が必要
- コマンドライン型のツールかつパラメータ設定が重要なため操作が煩雑

OmicsBoxのDNA-seq de novo アセンブリ機能

- ロ メーカーのサーバーで高速計算 高価なPCの購入は不要
- ロ マウス操作で簡単に解析
- ロ 真核生物に適切なアルゴリズムと高品質なアノテーションを付与

必要なファイル

シーケンサーから出力された生データもしくは受託サービスで得られたクリーンリードデータ

解析ワークフロー

QC・トリミング

 NGSより出力された生データが良好か、下流分析に影響する問題がないか確認。 de novo アセンブリに有用な高品質なリードデータが得られる。 FastQCとTrimmomaticツールを統合

de novo アセンブリ

高品質なリードデータのみで(リファレンスゲノムなしで)新規にゲノム配列を構築する解析。 構築された長い連続的な配列(コンティグ)に関するFASTAファイルが得られる。 ABySS、SPAdes、Flyeツールを統合

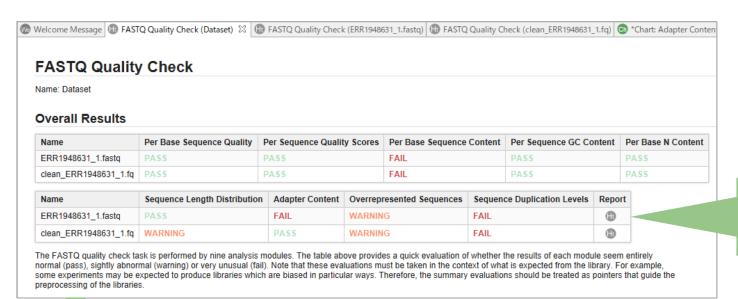
Repeat Masking

コンティグデータ中の反復配列を見つけ塩基を「N」、「X」、などに置き換える解析。 この変換により、以下の下流分析のツールに、これらの領域が反復配列であることを認識させることができ、 結果として、予測結果の精度を上げることができる。 RepeatMaskerを統合

遺伝子構造予測

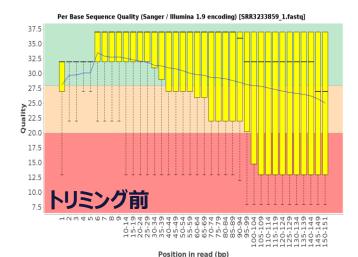
• 近縁種の遺伝子情報やRNA-Seqデータなどを使用して遺伝子構造を予測する。 ORFなどの情報をもつアノテーションファイル(GFF3/GTF)を取得できる。 AUGUSTUSを統合

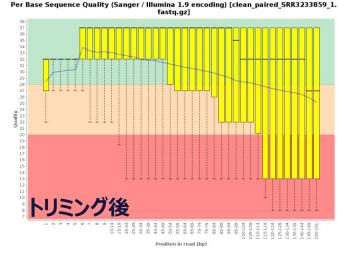
遺伝子機能 情報付与


・ Blastや7000以上の研究引用実績のあるBlast2GOアルゴリズムにより 高品質な遺伝子機能情報を付与することができる。

QC・トリミング

・データが良好か、下流分析に影響する問題がないか確認

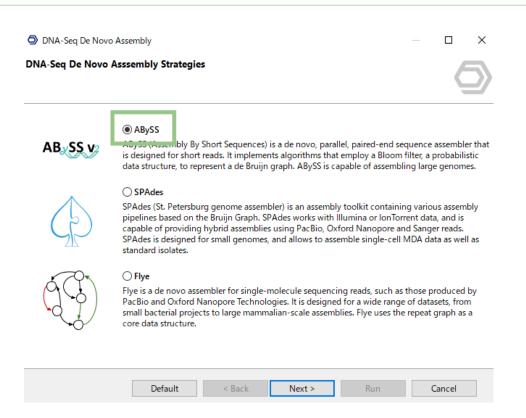




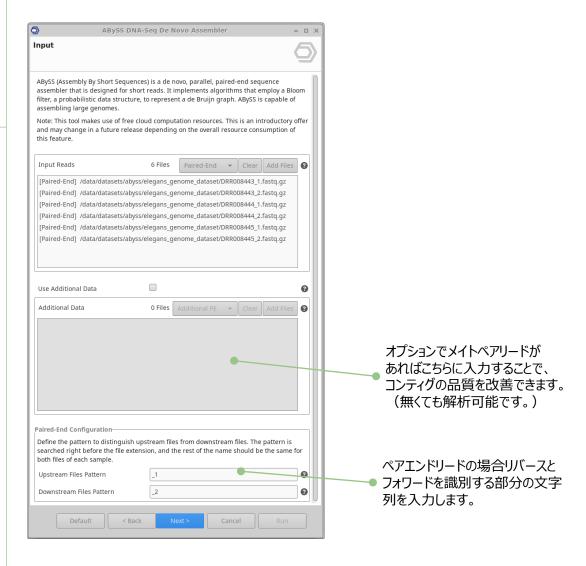
✓ 解析が終了するとレポートが作成

正常(PASS) わずかに異常(WARNING) 異常(FAIL)

シーケンスデータの品質をすばやく評価


レポートのアイコンをクリック→さらに詳細な結果を見ることが可能

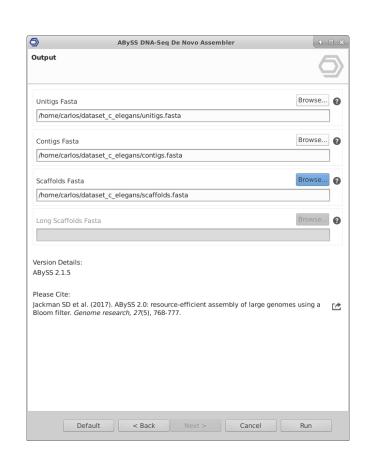
de novo アセンブリ



① de novo アセンブリツールをクリック Genome Analysis Moduleを使用します。

② 使用するアセンブリアルゴリズムの中から「ABySS」を選択

③ QCを実行した高品質なリードデータを入力


de novo アセンブリ

③パラメータを設定

ゲノム構築のプロセスは複数の要因の影響を受けるため、 推奨される真のパラメーター設定はありません。 異なる値を試し、結果を確認して最適な値を選択することをお勧めします。

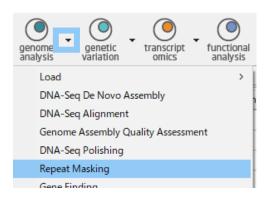
④ データの保存先を指定

de novo アセンブリ

結果のFASTAファイルに加えて、レポートとチャートが生成されます。 様々なパターンの設定を行い、設定ごとのレポートを比較します。 全ての項目について比較を行うことを推奨しますが、ここでは特に重要なものをご説明いたします。

Results Overview

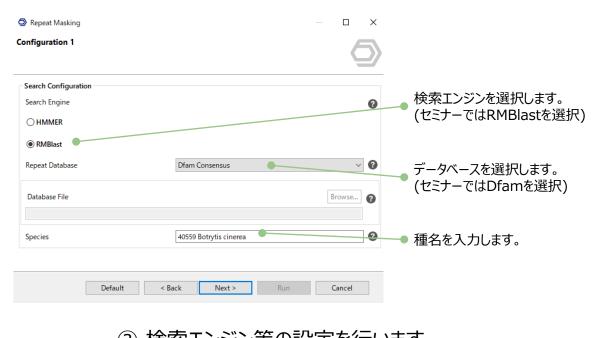
Bloom filter False Positive Rate (FPR): 0.056%.

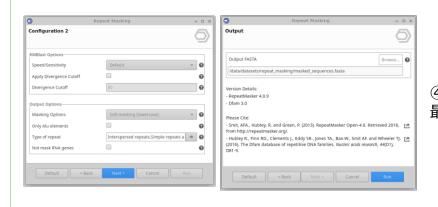

Statistic	assembly_unitigs	assembly_contigs	assembly_scaffolds							
Number of Contigs (>= 0 bp)	9,036	6,704	6,328							
Number of Contigs (>= 1000 bp)	1,801	494	266							
Number of Contigs (>= 5000 bp)	1,360	430	202							
Number of Contigs (>= 10000 bp)	1,041	398	191							
Number of Contigs (>= 25000 bp)	581	328	170							
Number of Contigs (>= 50000 bp)	253	245	152							
Total Length (>= 0 bp)	42,852,845	42,903,496	42,890,544							
Total Length (>= 1000 bp)	41,950,921	42,219,326	42,225,854							
Total Length (>= 5000 bp)	40,791,399	42,054,369	42,060,897							
Total Length (>= 10000 bp)	38,431,541	41,823,237	41,985,378							
Total Length (>= 25000 bp)	30,767,430	40,645,628	41,639,105							
Total Length (>= 50000 bp)	18,981,278	37,524,920	41,004,559							
For Contigs >= 500										
Number of Contigs	1,977	544	315							
Largest Contig	210,594	671,270	1,337,175							
Total Length	42,079,243	42,255,468	42,261,476							
GC (%)	42.01	42	42							
N50	44,425	166,474	358,508							
N75	23,565	98,900	204,792							
L50	297	80	40							
L75	614	164	78							
Number of N's per 100 kbp	0	12.02	29.36							

偽陽性率を示しています。この数値を5%未満にすること を推奨します。

N50はアセンブルの結果の良し悪しを判断する指標です。 この値が高いほど、より良いアセンブリを示しています。

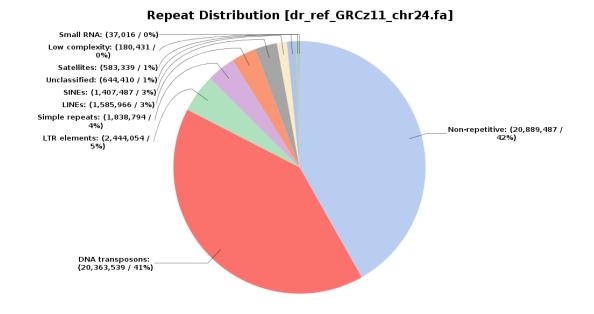
Repeat Masking




① Repeat Maskingツールをクリック Genome Analysis Moduleを使用します。

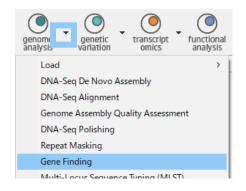
② 前項で作成したscaffolds.fastaを入力します。

③ 検索エンジン等の設定を行います。


④ 任意で高度な設定を行い、最後に保存先を指定します。

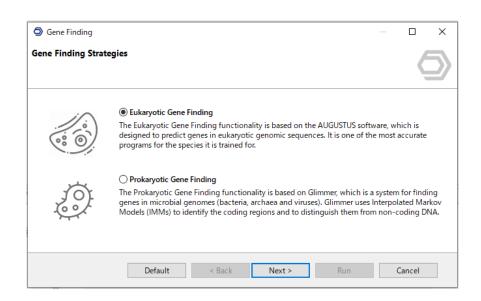
Repeat Masking

・結果 Repeat Maskingプロセスは、マスクされたシーケンス(FASTA形式)、検出されたリピートの位置(GFF形式)、レポートが保存されます。



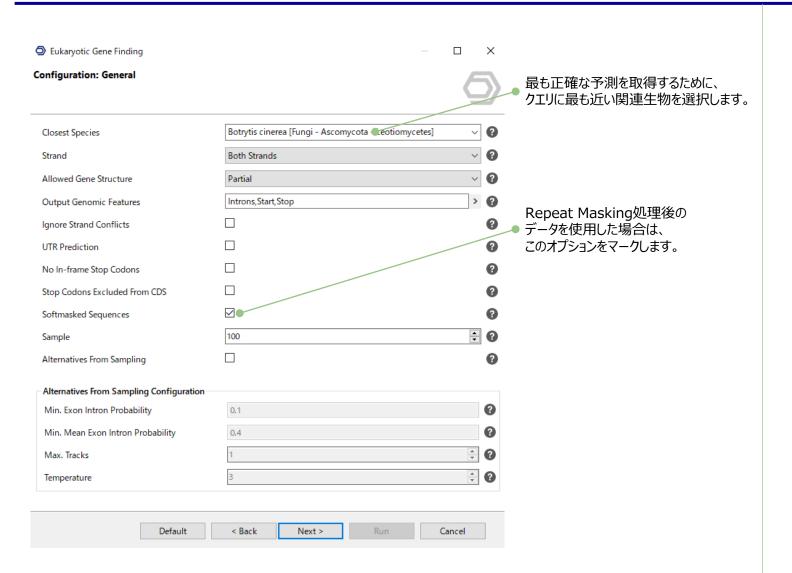
マスクされたシーケンス

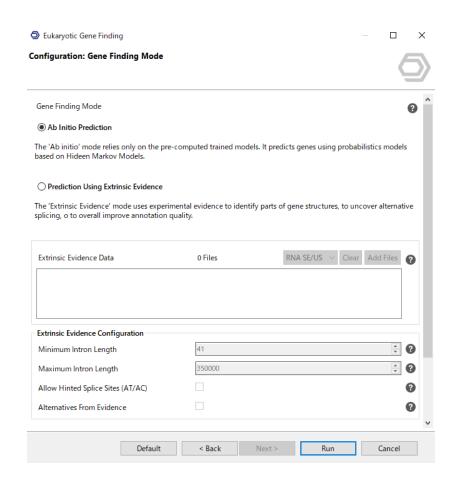
加えて、レポートとチャートが生成されます。 チャートは、各リピートクラスがカバーするシーケンスの割合を示しています。


遺伝子構造予測

① Gene Findingツールをクリック

Genome Analysis Moduleを使用します。


② Eukaryotic Gene Findingをクリック


③ Repeat Maskingで得られたFASTA形式の DNA入力シーケンスを入力します。

遺伝子構造予測

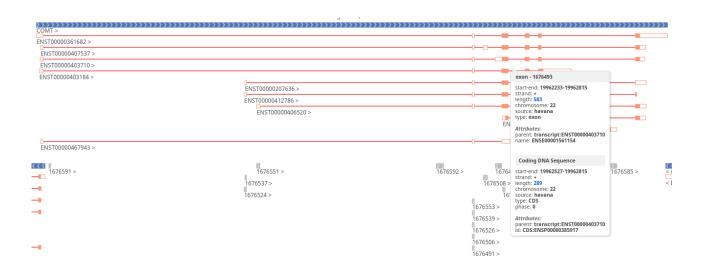
④パラメータを設定

⑤「③」で選択したデータのみを使用する 場合は、Ab initioモードを選択します。

RNA-Seqデータやタンパク質、EST/cDNAデータがある場合は、 Extrinsic Evidenceモードを選択することで、アノテーションの全体的な品質を向上させることができます。

遺伝子構造予測

·結果



CDS Length Distribution

S配列 タンパク質配列

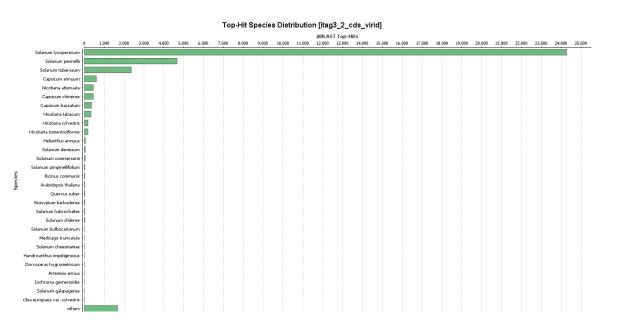
ゲノムアノテーション ファイル レポート・チャート

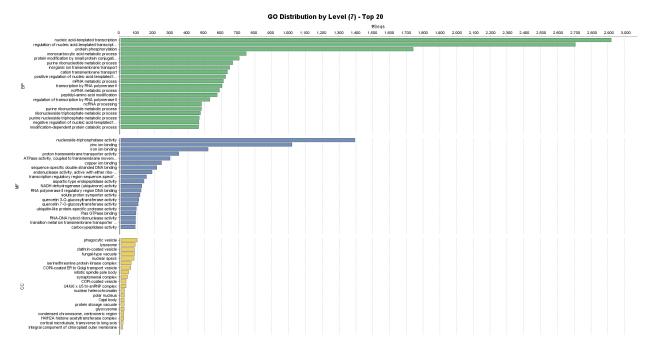
ゲノムアノテーションファイルは、 Genome Browserを使用して閲覧できます。

遺伝子機能情報付与

- *Functional Analysis Moduleを使用します。
- ・BLASTを実行すると、遺伝子構造予測の結果のデータ(FASTAファイル)に各配列のトップヒット配列の情報が表示されます。
- ・InterProScanを実行するとタンパク質のドメイン構造やモチーフなどの特徴を推定できます。
- ・メーカ独自のアルゴリズムBlast2GO方法論に基づき、7000件以上の研究引用の実績があります。

<u>-</u> V	Nr	∓ Tags		☐ Description	= Length	∓ #Hits		≡ sim mean	= #GO			= Enzyme Codes		≡ InterPro IDs	☐ InterPro GO IDs	☐ InterPro GO Names
V	344	INTERPRO BLASTED MAPPED ANNOTATED	g344.t1	guanine deaminase protein	456	20	OEO	96.69%	Л	P:GO:0006147; F:GO:0008270; F:GO:0008892; C:GO:0005829	P:guanine catabolic process; F:zinc ion binding; F:guanine deaminase activity; C:cytosol	EC:3.5.4.3	quanine	G3DSA:3.20.20.140 (GENE3D); IPR006680 (PFAM); IPR014311 (TIGRFAM); IPR011059 (G3DSA:2.30.40.GENE3D); PTHR11271 (PANTHER);	P:GO:0006147; F:GO:0008270; F:GO:0008892; F:GO:0016787; F:GO:0016810	P:guanine catabolic process; F:zinc ion binding; F:guanine deaminase activity; F:hydrolase activity; F:hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds


上記の例だと、


コンティグ「g344.t1」はグアニンデアミナーゼに関連し、 guanine catabolic processやguanine deaminase activityなどの関連するGO情報が 紐づけられたことが読み取れる。

遺伝子機能情報付与

アノテーション解析結果から様々ななグラフを簡単に作成できます。ここではその一部をご紹介します。

BLASTで検索された生物種のヒット数

各GO結果のランク図

OmicsBox ODNA-seq de novo Ftyj"U

- 適切なアゼンブリツールを使用して解析可能
- 真核生物専用の遺伝子構造予測ツールを搭載
- 初心者でも解析できるインターフェース
- 7日間無料のデモライセンス→ 詳細(PDF)

お問い合わせ先:フィルジェン株式会社

TEL 052-624-4388 (9:00~17:00)

FAX 052-624-4389

E-mail: biosupport@filgen.jp