

ウェブトレーニングセミナー:微生物プロファイル解析編

フィルジェン株式会社 バイオサイエンス部 (biosupport@filgen.jp)

- CLC bio(QIAGEN社)Workbenchシリーズの微生物ゲノム解析用プラグイン
- ▶ 16S rRNAやショットガンメタゲノムデータを用いた菌種組成解析と、病原菌のタイピン グや疫学解析ツール、遺伝子機能解析ツールが利用可能になる

- CLC bio Workbench上のデータを、そのまま解析に用いることが可能
- 解析パイプラインのワークフローが最初から組み込まれており、簡単な操作で解析を行う ことができる
- バクテリアやウイルスなど、解析に使用するリファレンスゲノムデータなども、専用ツールから 簡単にダウンロードが可能

使用可能になるツール群

Amplicon-Based OTU Clustering

16S rRNAなどアンプリコンシークエンスデータの各種QCチェックおよびOTUクラスタリング による菌種組成解析

Taxonomic Analysis

• ショットガンメタゲノムデータを用いた、宿主ゲノム配列データの除去および菌種組成解析

Functional Analysis (別途有償プラグイン「MetaGeneMark」が必要)

- メタゲノムシークエンスデータのDe Novoアセンブル
- BLAST検索、Pfamドメイン検索による遺伝子機能アノテーション付けと組成解析

Abundance Analysis

- 菌種組成データからのa多様性とβ多様性の計算
- 菌種または遺伝子機能組成データからの、サンプル間比較やヒートマップ作成

Typing and Epidemiology(ベータ版)

- NGS-MLST (Multi Locus Sequence Typing) 解析による病原菌のタイピングおよび薬剤耐性の確認
- K-mer Treeによる複数菌種のゲノム配列の類似度の比較
- SNP Treeによる分子系統樹の作成

Databases

- NCBIからの、バクテリアやウイルスなどのゲノム配列データの一括ダウンロード
- Greengenes, SILVA, UNITEなどのOTU配列データ、MLSTスキーマや薬剤耐性 遺伝子配列データのダウンロード
- カスタムデータからのデータベース作成

- どのアプリケーションを使用する場合も、最初にDatabasesツールでリファレンスデータの取得が必要
- 「Amplicon-Based OTU Clustering」「Taxonomic Analysis」「Functional Analysis」で は、解析結果のデータを使用し、「Abundance Analysis」による2次解析が可能

本日の内容

微生物プロファイル解析

Amplicon-Based OTU Clustering

- 16S-, 18S-, ITS rRNA配列のDe Novo / Referenceベースの OTUクラスタリング
- Greengenes, Silva, UNITEの菌種分類データベース、またはカスタムデータベースをサポート

Taxonomic Analysis

- メタゲノムサンプル内の菌種組成の決定
- 宿主ゲノムDNAのコンタミネーションの除去

1. Amplicon-Based OTU Clustering

データ解析の手順

手順1: リファレンスデータの取得

● Greengenesなどのリファレンスデータをダウンロード

手順2: 1次解析

- リード配列のクオリティチェック(アダプター除去、ペアリードの結合など)
- OTUクラスタリング

手順3: 2次解析

● アルファ多様性、ベータ多様性の計算

手順1. リファレンスデータの取得

リファレンスデータの取得

- リファレンスデータとして、データベースのOTU配列データが必要になり、専用のダウンロードツールを使ってダウンロードできる。
- ダウンロードを行う際は、コンピュータがインターネットに接続されている必要がある。

取得できるデータベースの種類

- **Greengenes** (原核生物の16S rRNA配列データ)
- **SILVA** (原核生物と真核生物の、16S/18S rRNA配列データ)
- **UNITE** (ITS spacer配列データ)

Download Amplicon-Based Reference Database Filgen

- 1. Download Amplicon-Based Reference Databaseを選択してダブルクリック。
- 2. ダウンロードするデータベースを選択。

Download Amplicon-Based Reference Database Filgen

ダウンロードが終了すると、保存先に指定したフォルダ内に、 リファレンスデータが作成される。

手順2. 1次解析

1次解析の解析パイプライン

Trim Sequences

・アダプターの除去、およびリード配列のトリミングを行う

Optional Merge Paired Reads

・オーバーラップしているペアリード配列の結合を行う

Fixed Length Trimming

・リード配列の長さを揃える

Filter Samples Based on Number of Reads

・リード配列数の少ないサンプルを除去する

OTU Clustering

•OTUクラスタリングを行う

- 1. Data QC and OTU Clusteringを選択してダブルクリック。
- 2. リード配列データを選択。

- Trim adapter list: アダプターリストデータを指定する。
- Quality limit: Quality scoreの信頼性の閾値を指定する。
- Also search on reversed sequence: リード配列のアンチセンス鎖からも、アダプターのトリミングを行うかを選択する。
- Mismatch cost: アライメントにマッチしない配列があった場合のコスト。
- Minimum score: リードを結合する場合の最低スコア。
- Gap cost: アライメントにギャップがある場合のコスト。
- <u>Maximum unaligned end mismatches:</u> リード末端において、許容するアライメントされない塩基数の設定。

- Automatic read length: インプットデータから自動で決定されたリード配列長に揃える。
- *別々にインプットしたリード配列データでは、違う長さになることがあります。
- Read length: 任意のリード配列長を指定する。

- ・ <u>OTU picking:</u> OTUクラスタリングの手法を選択する。
- OTU database: リファレンス配列データを指定する。
- <u>Similarity percent specified by OTU database: リファレンス配列データで設定されている相同性の値を使い、OTUクラスタリングを行う。</u>
- <u>Allow creation of new OTUs:</u> OTU databaseにマッチしなかったリード配列から、条件を再設定してOTUクラスタリングを行う。
- <u>Taxonomy similarity percentage</u>: マッチしなかったリード配列を使ってのOTUクラスタリングの相同性を再設定する。
- <u>Similarity percentage:</u> リファレンス配列データで設定されている相同性以外の値を使って、OTUクラスタリングを行う。

計算結果として、以下のデータが 出力される。

OTU配列データ

≣ FOTU (S	Sequences) ×				
		20	40 I	60	80
1109867	TCGAGAAT	TTTTCTCAATGGGGGAAACCC	TGAAGGAGCGACGCCGCGTGG	GGGATGAATGGCTTCGGCC	CGTAAACCCCT
		20 	40 I	60 I	80
1109766	TGGGGAAT	CTTGCACAATGGGCGAAAGCC	TGATGCAGCGACGCCGCGTGG	GGGATGAAGCATTTCGGTG	TGTAAACCCCT
		20 	40 I	60 I	80
1108954	TGGGGAAT	ATTGCGCAATGGGCGGAAGCC	TGACGCAGCGACGCCGCGTGG	GGGATGAAGGCCTTCGGGT	TGTAAACCCCT
		20 I	40 I	60 I	80
1108431	TCGAGAAT	TTTTCACAATGGGCGCAAGCC	TGATGGAGCGACGCCGCGTGG	GGGATGAATGGCTTCGGCC	CGTAAACCCCT
		20 	40 I	60 I	80
1108199	TGGGGAAT	TTTGCGCAATGGGGGAAACCC	TGACGCAGCAACGCCGCGTGG	AGGATGAAGTCCCTTGGGA	CGTAAACTCCT

OTU組成データ

III OTU (Ta	ble) ×		
Rows: 1,	256		
Name	Taxonomy	Combined A	GT-A-B
1109867	k_Bacteria, p_Verrucomicrobia, c_[Pedosphaerae], o_[Pedosphaerales], f_auto67_4W, g_, s_	2	0
1109766	k_Bacteria, p_Acidobacteria, c_DA052, o_Ellin6513, f_, g_, s_	12	0
1108954	k_Bacteria, p_Actinobacteria, c_Actinobacteria, o_Actinomycetales, f_, g_, s_	116	16
1108431	k_Bacteria, p_Verrucomicrobia, c_[Pedosphaerae], o_[Pedosphaerales], f_Ellin515, g_, s_	34	0
1108199	k_Bacteria, p_Acidobacteria, c_Acidobacteriia, o_Acidobacteriales, f_Koribacteraceae, g_, s_	12	2
1107608	k_Bacteria, p_Proteobacteria, c_Deltaproteobacteria, o_Myxococcales, f_, g_, s_	15	1
1107128	k_Bacteria, p_Verrucomicrobia, c_[Spartobacteria], o_[Chthoniobacterales], f_[Chthoniobacteraceae], g_DA101, s_	2	0
1107044	k_Bacteria, p_Verrucomicrobia, c_[Pedosphaerae], o_[Pedosphaerales], f_auto67_4W, g_, s_	4	0
1107029	k_Bacteria, p_Acidobacteria, c_DA052, o_Ellin6513, f_, g_, s_	19	0
1105389	k_Bacteria, p_Proteobacteria, c_Alphaproteobacteria, o_Rhodospirillales, f_Rhodospirillaceae, g_, s_	5	0

レポートデータ

	y							
Input database size	Filtered databas	ise size	OTUs based	on database	De	novo OTUs	Tota	I predicted OTUs
99,	322	1,237		974		474		1,44
B								· · · · · · · · · · · · · · · · · · ·
Read summary								
Read summary Number of reads	Filtered reads		e reads after Itering	Chimeric r	eads	Unique chimeric rea	ids	Reads in OTUs

- 組成データのShow Tableアイコンから、サンプルごとの組成データをリスト形式で確認できる。
- Aggregate taxonomy項目から、界~種などのカテゴリー分類を切り替えることが可能。

- 組成データのShow Stacked Visualizationアイコンから、サンプルごとの組成データをグラフ形式で確認できる。
- グラフの種類、またカテゴリー分類の切り替えが可能。

- 組成データのShow Sunburst editorアイコンから、サンプルごとの組成データをサンバースト図で確認できる。
- 表示するカテゴリーレベルの変更が可能。
- 任意の箇所にマウスカーソルを合わせると、組成比データが表示される。

手順3.2次解析

2次解析の解析パイプライン

Remove OTUs with Low Abundance

・組成が低いOTUデータを除去する

Align OTUs using MUSCLE

・OTU配列データのアライメントを行う。

Maximum Likelihood Phylogeny

・アライメント結果から系統樹を作成する。

Alpha Diversity

・アルファ多様性を計算する。

Beta Diversity

・ベータ多様性を計算する。

- 1. Estimate Alpha and Beta Diversitiesを選択してダブルクリック。
- 2. 組成データを選択。

- Gx Estimate Alpha and Beta Diversities 1. Select OTU abundance Configurable Parameters Bray-Curtis 1 2. Alpha Diversity **V** Jaccard 3. Beta Diversity Euclidean Unweighted UniFrac Weighted UniFrac Weighted UniFrac not normalized D 0 UniFrac D 0.5 UniFrac Locked Settings 9 ? Previous <u>N</u>ext
- Number of OTUs ~ Shannon entropy: アルファ多様性の計算 アルゴリズムを選択する。
- Phylogenetic diversity: 系統的多様性の計算を行う。

- Bray-Curtis ~ Euclidean: ベータ多様性の計算アルゴリズムを選択する。
- <u>Unweighted UniFrac ~ D 0.5 UniFrac:</u> 距離の計算アルゴリズムを選択する。


```
Estimate Alpha and Beta Diversities

GTU (Table) (Filtered) alignment tree

OTU (Table) (Filtered) (PCoA - Bray-Curtis )

OTU (Table) (Filtered) (PCoA - Jaccard )

OTU (Table) (Filtered) (PCoA - Unweighted UniFrac )

OTU (Table) (Filtered) (PCoA - Weighted UniFrac )

OTU (Table) (Filtered) (Alpha Diversity - Number of OTUs)

OTU (Table) (Filtered) (Alpha Diversity - Chao 1 bias-corrected)

OTU (Table) (Filtered) (Alpha Diversity - Phylogenetic diversity)
```


系統樹データでは、サークル表示などのレイアウトの変更が可能。


```
Estimate Alpha and Beta Diversities

CTU (Table) (Filtered) alignment_tree

OTU (Table) (Filtered) (PCoA - Bray-Curtis)

OTU (Table) (Filtered) (PCoA - Jaccard)

OTU (Table) (Filtered) (PCoA - Unweighted UniFrac)

OTU (Table) (Filtered) (PCoA - Weighted UniFrac)

OTU (Table) (Filtered) (Alpha Diversity - Number of OTUs)

OTU (Table) (Filtered) (Alpha Diversity - Chao 1 bias-corrected)

OTU (Table) (Filtered) (Alpha Diversity - Phylogenetic diversity)
```


アルファ多様性データをまとめたレポートが、選択したアルゴリズム別に出力される。


```
Estimate Alpha and Beta Diversities

CTU (Table) (Filtered) alignment_tree

OTU (Table) (Filtered) (PCoA - Bray-Curtis)

OTU (Table) (Filtered) (PCoA - Jaccard)

OTU (Table) (Filtered) (PCoA - Unweighted UniFrac)

OTU (Table) (Filtered) (PCoA - Weighted UniFrac)

OTU (Table) (Filtered) (Alpha Diversity - Number of OTUs)

OTU (Table) (Filtered) (Alpha Diversity - Chao 1 bias-corrected)

OTU (Table) (Filtered) (Alpha Diversity - Phylogenetic diversity)
```


- 選択した計算アルゴリズムごとに、ベータ多様性データが出力される。
- メタデータに基づいたラベルの表示分類や、テーブル表示への切り替えで、主成分の寄与度などを確認できる。

2. Taxonomic Analysis

データ解析の手順

手順1: リファレンスデータの取得

● バクテリア、ウイルスなどのリファレンスゲノム配列データをダウンロード

手順2: 1次解析

- リード配列のクオリティチェック (アダプター除去、低クオリティ配列のカットなど)
- 宿主ゲノムデータの除去とTaxonomicプロファイリング

手順3: 2次解析

- サンプルごとの菌種組成データの統合
- ▼ アルファ多様性、ベータ多様性の計算

手順1. リファレンスデータの取得

リファレンスデータの取得

- リファレンスデータとして、バクテリアやウイルスなどのゲノム配列データが必要となり、専用のダウンロードツールを使ってダウンロードできる。
- ダウンロードを行う際は、コンピュータがインターネットに接続されている必要がある。
- データ量が大きいので、コンピュータのハードディスク空き容量に注意すること。

取得できるデータの種類

原核生物

• バクテリア

• 古細菌

真核生物

カビ

• 原生動物

ウイルス

Create Microbial Reference Database

- 1. Create Microbial Reference Databaseを選択してダブルクリック。
- 2. ダウンロードするゲノムデータの生物の種類などを設定。

Create Microbial Reference Database

- 3. データの一覧が表示されたら、Quick Selectionより、ダウンロードするデータのカテゴリーを選択する。
- 4. チェックが表示されたデータと合計データ容量を確認し、Download selectionをクリックする。

Create Microbial Reference Database

- 5. ダウンロードされたゲノムデータが作成される。
- * ダウンロードには数時間かかることもあり、データベースの更新作業によって、ダウンロードが途中で中断されることもある。その場合は、再度実行し直す必要がある。

手順2.1次解析

1次解析の解析パイプライン

Create Sequencing QC Report

・リード配列データのQCチェック結果のレポートを作成する

Trim Sequences

・アダプターの除去、およびリード配列のトリミングを行う

Taxonomic Profiling

・宿主ゲノム配列の除去と、菌種組成解析を行う

Data QC and Taxonomic Profiling

- 1. Data QC and Taxonomic Profilingを選択してダブルクリック。
- 2. リード配列データを選択。

Data QC and Taxonomic Profiling

- Trim adapter list: アダプターリストデータを指定する。
- Quality limit: Quality scoreの信頼性の閾値を指定する。
- Also search on reversed sequence: リード配列のアンチセンス鎖からも、アダプターのトリミングを行うかを選択する。
- References: リファレンスゲノム配列データを指定する。
- <u>Filter host reads:</u> 宿主ゲノム配列データの除去を行うかどうかを選択する。
- Host genome: 宿主ゲノム配列データを指定する。

Data QC and Taxonomic Profiling

- Amplicon-Based OTU Clusteringと違い、各サンプルごとにデータが作成される。
- データの表示については、Amplicon-Based OTU Clusteringの場合と同じで、Aggregate taxonomy 項目から、界~種などのカテゴリー分類を切り替えたり、バーチャートグラフやサンバースト図での表示が可能。

手順3.2次解析

2次解析の解析パイプライン

Merge Abundance Table

・各サンプルの組成データを統合する。

Alpha Diversity

・アルファ多様性を計算する。

Beta Diversity

・ベータ多様性を計算する。

- 1. Merge and Estimate Alpha and Beta Diversitiesを選択してダブルクリック。
- 2. 組成データを選択。

ゴリズムを選択する。

する。

統合された組成データでは、界~種などのカテゴリー分類の切り替えや、バーチャートグラフやサンバースト 図での表示が可能。

アルファ多様性データをまとめたレポートが、選択したアルゴリズム別に出力される。


```
in the Herge and Estimate Alpha and Beta Diversities
      nerged 🌇
     🚾 merged (Alpha Diversity - Total number)
      🕒 merged (PCoA - Bray-Curtis)
```


選択した計算アルゴリズムごとに、ベータ多様性データが出力される。

お問い合わせ先:フィルジェン株式会社

TEL 052-624-4388 (9:00 \sim 17 : 00)

FAX 052-624-4389

E-mail: biosupport@filgen.jp