Item #: HC9-EK-48 HC9-EK-96

BioFront MonoTrace™ Hazelnut ELISA Kit

Store contents at 2-8°C

A Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay (ELISA) for the Quantitative and/or Qualitative Detection of Hazelnut in Food

Read instructions carefully before using kit

TABLE OF CONTENTS **Page** DESCRIPTION AND INTENDED USE 1 REQUIRED MATERIALS......2-3 PREPARATION OF REAGENTS......4 PREPARATION OF SAMPLES.....4 SAMPLE EXTRACTION4 RECOMMENDED ELISA PROCEDURE4-5 ANALYSIS OF RESULTS...... 5-6 QUANTITATIVE ANALYSIS......5 PERFORMANCE INDICATIONS6 ASSAY CLAIMS......6 SHELF LIFE...... 6 MATERIAL SAFETY DATA SHEET INFORMATION......6 WARRANTY 6 CUSTOMER SERVICE 6

DESCRIPTION AND INTENDED USE

The BioFront Technologies hazelnut ELISA Kit is an enzyme-linked immunosorbent assay (ELISA) for the quantitative or qualitative detection of hazelnut. This monoclonal antibody (MAb)-based assay provides a highly sensitive and specific method for the quantification of hazelnut presence/contamination within a variety of food matrices. It may also be used for simple "yes-no" qualitative assessments. The kit enables a facile and quantitative measure of hazelnut without the cross-reactivity issues often associated with polyclonal antibody (PAb)-based ELISA kits. The target indicator protein is a major hazelnut allergen and was selected based on its strong resistance to food processing and high abundance in the nut meat.

Rev. B2.0 Item #: HC9-EK-48 HC9-EK-96

SPECIFICATIONS

Testing Time (post-extraction): ~30 minutes

Number of Test Wells per Kit: 48 (HC9-EK-48) or 96 (HC9-EK-96)

*Limit of Detection: 0.04 ppm **Range of Quantification: 1 to 40 ppm

Specificity: Hazelnut

Cross-Reactivity The assay exhibits strong reactivity to hazelnut (Corylus Americana) and

to a lesser extent walnut (1.08%). Pecan (0.011%) and fava bean (0.0018%) were minimally reactive in the assay. At concentrations as high as 100,000 ppm, no cross-reactivity was observed in other tested matrices including tree nuts, legumes, seeds, flour, meats and spices

Recovery Recovery of spiked hazelnut samples was acceptable, according to

current AOAC guidelines (J. AOAC Int. 2012), when the following food matrices were assayed: **chocolate**, **cookies**, **cake**, **ice cream**, **and**

spices

For more details on assay performance, a full validation report is available upon request.

Note- calculations of parameters are based on representative data from multiple assays using 10-minute incubation steps at room temperature (20-23.5°C / 68-74.3°F). Higher temperatures may result in elevated absorbance readings for samples and standards.

*The limit of detection (LOD) was determined statistically based on the standard deviation of the response (SD) and assay background according to the formula: LOD = background + 3X SD.

REQUIRED MATERIALS

Kit contents

Reagent	Amount within 48-well kit (HC9-EK-48)	Amount within 96-well kit (HC9-EK-96)
Assay plate, one 96-well plate	Six 8-well strips Sufficient for 48 or 96 assay values, including standards & blank	
10X ExB = 10X extraction buffer	50 mL Sufficient to extract > one hundred 0.25 g or 0.25 mL samples	
5X SD = 5X sample diluent	50 mL Sufficient to dilute samples and standards for > 96 assays wells	
Ready-to-use hazelnut calibrators: 40, 20, 10, 4, 1 and 0 ppm	1 mL of each standard Sufficient for 5 standard curves	2 mL of each standard Sufficient for 10 standard curves
10X WB = 10X wash buffer	50 mL Sufficient wash buffer for > 96 wells	
CON = 1X anti-hazelnut HRP-conjugate	12 mL Sufficient for > 48 wells	15 mL Sufficient for > 96 wells
SUB = high sensitivity TMB substrate	12 mL Sufficient for > 48 wells	15 mL Sufficient for > 96 wells
STOP = HRP quench solution	12 mL Sufficient for > 48 wells	15 mL Sufficient for > 96 wells

^{**}The range of quantitation (ROQ) was determined experimentally, whereby the lower limit of the ROQ is defined as the lowest concentration at which the assay can reliably and accurately quantify hazelnut in a sample. For quantitation above 40 ppm, samples should be diluted such that the results fall within the ROQ (1 to 40 ppm).

Recommended equipment

- Chamber or water bath for 60°C incubation
- Timer
- Balance or scale capable of measuring milligram quantities
- 1.5 or 2.0 ml microfuge tubes and tube racks
- 15 or 50 ml conical tubes
- Distilled water or equivalent
- Pipet-Aid (or equivalent) and serological pipettes, capable of measuring 5-50 ml
- *Single and multichannel pipettes, capable of measuring 1-1,000 μI
- *96-well assay blocks
- *Reagent reservoirs
- · Absorbent paper or ELISA plate washer
- Centrifuge, capable of 2,000 x g
- Vortex
- Microplate reader, capable of reading absorbance at 450 nm

*Note- It is recommended that assay blocks, reagent reservoirs (basins) and a multichannel pipette be used to obtain the most accurate results. For assays in which more than 16 samples will be tested, this is required to insure the incubation time of all samples is universal.

HAZELNUT ASSAY PROCEDURE

It is important for the user to read all instructions carefully before performing the assay. Reagents, including the assay plate, should be <u>equilibrated to room temperature</u> prior to use.

Important notes

Extraction

The hazelnut ELISA assay is extremely sensitive, capable of detecting minute amounts of hazelnut. Careful consideration should be given for the preparation of food matrices to ensure important parameters:

- 1. The equipment used to prepare samples must be <u>thoroughly cleaned</u> to prevent the contamination of subsequent samples.
- 2. Disposable plasticware (tubes, pipette tips, etc.) are used wherever possible.
- 3. The samples are homogenized completely to prevent excessive intra-sample variation.
- 4. The supplied extraction buffer is sufficient for up to fifty 0.5-gram or 0.5-milliliter samples. If other quantities are used, a 20:1 buffer/sample ratio should be maintained (19 volumes of extraction buffer to 1 part sample).
- 5. Food matrices containing high concentrations of solid fats, such as chocolate, may require additional heating to completely melt the sample <u>before</u> adding preheated extraction buffer.
- 6. For <u>spices and dairy products</u> or food matrices <u>containing polyphenols</u>, <u>such as tannins</u>, found in chocolate, fruits, wine, tea and coffee, the addition of <u>5% non-fat dry milk</u> to the extraction buffer is recommended to achieve optimal results. If performance issues with a certain matrix are suspected, please contact a BioFront Technologies representative.

Spike control preparation (optional)

Some food matrices may alter the recovery and sensitivity of the ELISA. If suspected, unspiked and hazelnut-spiked control matrices can be tested. Values obtained on test samples can then be adjusted accordingly. Ready-to-use standards provided with kit are meant to serve as calibrators for the assay and are NOT to be used as spiking agents. For help with setting up your matrix validation through the testing of spiked samples or to request that a unique matrix be validated by BioFront Technologies, please contact one of our representatives.

Rev. B2.0 Item #: HC9-EK-48 HC9-EK-96

Preparation of reagents (extraction buffer, sample diluent, and wash buffer)

- 1. Determine the amounts of reagents needed and dilute the concentrated extraction buffer (10X ExB), sample diluent (5X SD), and wash buffer (10X WB) using distilled water or equivalent.
 - To prepare 100 ml of 1X ExB, add 10 ml of the **10X ExB** to 90 ml of distilled water. Prior to performing sample extraction, preheat the 1X ExB to 60°C (140°F).
 - To prepare 100 ml of 1X SD, add 20 ml of the **5X SD** to 80 ml of distilled water.
 - To prepare 100 ml of 1X WB, add 10 ml of the **10X WB** to 90 ml of distilled water.
- 2. Unused 1X solutions can be stored refrigerated (2-8 °C) for up to 1 month and should be equilibrated to room temperature prior to use.
- 3. If buffers appear cloudy after equilibration to room temperature, they may be contaminated and should be discarded.

Preparation of samples

To ensure adequate sampling, it is important that the samples be thoroughly homogenized and the particle size rendered as small as possible. Blending/grinding to a fine powder/flour is strongly recommended. Small particle size also enhances extraction efficiency.

Solid/Liquid sample extraction (read 'important notes' section prior to this step)

- 1. Transfer 0.5 gram of finely ground food matrix or 0.5 mL of liquid sample to a \geq 15 ml tube.
- 2. Add 9.5 ml of preheated 1X extraction buffer (diluted **ExB)** to mixture and briefly vortex to suspend the contents. If other starting quantities are used, a 20:1 buffer/sample ratio should be maintained.
- 3. Incubate tubes at 60°C (140°F) for 10 minutes, mixing vigorously every ~2 minutes.
- 4. Spin extraction samples at 2,000 x g for 10 minutes at room temperature and transfer the aqueous phase into a fresh tube for testing.

Swab sample extraction

- Collection of environmental swab samples from surfaces should be carried out according to the manufacturer's protocol. For assistance with swab sample collection, please contact a BioFront Technologies representative.
- 2. Add 4 ml of preheated 1X extraction buffer (diluted **ExB)** to the swab sample collection tube containing the 1 ml swab sample solution and detached swab head. Briefly vortex to mix the contents.
- 3. Incubate tubes at 60°C (140°F) for 10 minutes, mixing vigorously every ~2 minutes.
- 4. Transfer the aqueous phase into a fresh tube for testing.

Recommended ELISA procedure

- Determine the number of assay wells needed for test samples and for standards. Carefully remove the strips that are **not** to be used by gently pushing them from beneath the plate until they pop out and return to Mylar bag. Seal and store at 2-8°C.
- 2. Dilute sample extracts 1:2 in 1X sample diluent (1 volume of extracted sample to 1 volume diluted SD).
- 3. Add 200 µl of diluted samples and ready-to-use standards to the appropriate wells.
- 4. Incubate plate at room temperature for 10 minutes.

Rev. B2.0 Item #: HC9-EK-48 HC9-EK-96

5. Discard well contents, blot onto absorbent paper with a slapping action (or autowash). Wash 3 times with 1X wash buffer, (diluted **WB**) using ≥ 200 µl per wash, and blot dry.

- 6. Add 100 μ I of 1X anti-hazelnut antibody-conjugate (CON) to each well.
- 7. Place plate in dark environment and incubate at room temperature for 10 minutes.
- 8. Discard well contents, wash, and blot dry as described in step #5.
- 9. Add 100 µl of HRP substrate (SUB) per well.
- 10. Incubate plate in dark for 10 minutes.
- 11. Add 100 µl of quench solution (**STOP**) to each well and mix by gently pipetting to prevent bubbles that could interfere with absorbance readings.
- 12. Read the absorbance of the wells using a plate reader programmed with a primary absorbance filter of 450 nm and a differential filter of 630 nm. For some plate readers, the differential filter may be automatically accounted for and reading only at 450 nm will be required. Please consult your reader user manual for more information.
- 13. Plot the standard curve. Interpolate unknown data using the standard curve and appropriate dilution factor. If the recommended ELISA procedure above is followed, the resulting dilution factor would be two (2). Background may be subtracted to normalize data if desired.

ANALYSIS OF RESULTS

A qualitative assessment can be made using one or more of the provided assay standards. Any of these standards can be used to define a specific threshold at which the unknown sample can be compared. Samples with normalized absorbance values above the threshold are determined to be positive, whereas those samples below the threshold are determined to be negative.

For swab samples, quantification of the target is generally not performed as the assay, is instead, intended to provide a qualitative indication as to whether hazelnut is present or absent in the test sample. The BioFront Technologies Surface Swabbing Kit has been validated to recover at least 1 microgram hazelnut from a 25 cm² area using the swab method.

Quantitative analysis of assay results

A **standard curve** should be generated from the averaged ODs of the 0-40 ppm standards after subtracting the 0 ppm averaged background values. A third order polynomial (cubic) curve fit is recommended for this evaluation. The ppm concentration of test samples can be determined by plotting OD values onto the curve and multiplying the calculated concentration by the appropriate dilution factor (if used). Note that the ppm designations on the provided standards are intended to allow the direct calculation of ppm of total hazelnut within the <u>original food sample</u>. BioFront Technologies also offers users a MonoTrace ELISA calculation template in excel format which can be used to simplify sample quantitation. Please contact a representative for more information.

Rev. B2.0 Item #: HC9-EK-48 HC9-EK-96

Performance indications

The ready-to-use standards (prepared from full-fat hazelnut flour) used in the assay should yield OD values in line with those indicated on the accompanying lot specific Certificate of Analysis. Significant deterioration in signal may indicate expiration of the reagents. If quantification is required and the OD of the test sample is above that of the 40 ppm hazelnut standard, further dilution of the sample should be performed prior to repeating the assay to ensure results fall within the assays ROQ.

Assay Claims

When performed as instructed, the assay is capable of a simple yes/no qualitative assessment of hazelnut presence in food samples or a quantitative determination of hazelnut content. Extracted food samples that generate a colorimetric readout can be compared to the linear portion of a standard curve, allowing the interpolation of hazelnut content in ppm. The assay is capable of quantifying hazelnut content between 1 and 40 ppm.

A negative result by this or any other immunological assay does not assure the complete absence of hazelnut within the sample. The sample may contain hazelnut below the limit of detection of this assay. The hazelnut ELISA kit **does not claim** that food is safe for consumption based upon a determination of hazelnut content.

SHELF LIFE

Each plate is packed in a vacuum-sealed Mylar™ pouch with desiccant and oxygen absorbing packets to extend the shelf life of the product to a minimum of six (6) months from the date of manufacture, if stored at 4°C. The stability of the ready-to-use standards may slightly deteriorate over time, as indicated in the certificate of analysis accompanying each kit. BioFront Technologies is happy to provide fresh standards at the customer's request. The performance of the plates can be adversely affected by excessive exposure to light, moisture, and air. It is recommended that the foil pouch and contents be brought to room temperature before removing the contents to avoid condensation.

MSDS INFORMATION

Material safety data sheets are available on the BioFront website, www.biofronttech.com.

WARRANTY

These products are warranted to perform as described herein. All returns must be pre-approved for refund or credit by a BioFront technical representative and are subject to inspection and verification of contents. Failure to comply may result in a delayed or voided refund.

CUSTOMER SERVICE

BioFront Technologies Inc. 3000 Commonwealth Blvd

Tallahassee, FL 32303
e-mail: support@biofronttech.com

web: www.biofronttech.com
phone: 850-727-8107