

Organometallic derived ZnO QDs for improved sollar cell performance

Recently it has been demonstrated that the introduction of Electron Transfer Layers (ETLs) consisting of organometallic-derived Zinc Oxide Quantum Dots (OM ZnO QDs) in perovskite solar cells (PSCs) leads to superior photovoltaic performance and enhanced stability in comparison to PSCs based on a standard sol-gel derived ZnO layer (S-G ZnO QDs). The following table shows the results of said study corresponding to the morphology and electrical properties of ETLs, as well as to the performance and stability of analogous PSCs:

Morphology	OM ZnO QDs	S-G ZnO QDs
roughness of the surface	smoother surface (RMS=14.84 nm)	rougher surface (RMS=20.86 nm)
surface defects	no defects, no organic and inorganic impurities	surface defects, residual acetate ligands, alkali metal contaminations
Electrical properties	OM ZnO QDs	S-G ZnO QDs
Resistivity x 10 ⁻⁵	4.12 Ω•cm	9.28 Ω•cm
Conductivity x 10 ³	24.27 (Ω•cm) ⁻¹	10.77 (Ω•cm) ⁻¹
Carrier density x 10 ²¹	6.17 cm ⁻³	4.66 cm ⁻³
PSC performance	OM ZnO QDs	S-G ZnO QDs
Open circuit voltage (V _{oc})	1.129 V	1.09 V
Short circuit current density (J _{SC})	22.93 mA•cm⁻²	21.95 mA∙cm ⁻²
Fill factor (FF)	77.52%	74.34%

PSC stability	OM ZnO QDs	S-G ZnO QDs
Long-term stability		
after 500h of storage in ambient conditions (25°C, approx. humidity 25%)	95% of original PCE	75% of original PCE
Temperature stability		
after 250h of heating (85°C, RH=60%)	54% of original PCE	complete desintegration

The presented comparison indicates that the application of OM ZnO QDs in ETLs:

- Allows for the formation of the uniform surface morphology with a reduced amount of surface defects
- Allows for low temperature processing
- Improves extraction of electrons
- Improves the ZnO/perovskite interface stability along with the perovskite film quality
- Reduced interfacial charge recombination and enhanced VOC and FF
- Superior photovoltaic performance of the PSC
- Enhanced long-term and thermal stability

For more information about the study, please follow the links:

- https://doi.org/10.1002/adfm.202205909
- Supporting information